Real-Time Gas Identification by Analyzing the Transient Response of Capillary-Attached Conductive Gas Sensor

نویسندگان

  • Behzad Bahraminejad
  • ShahNor Basri
  • Maryam Isa
  • Zarida Hambali
چکیده

In this study, the ability of the Capillary-attached conductive gas sensor (CGS) in real-time gas identification was investigated. The structure of the prototype fabricated CGS is presented. Portions were selected from the beginning of the CGS transient response including the first 11 samples to the first 100 samples. Different feature extraction and classification methods were applied on the selected portions. Validation of methods was evaluated to study the ability of an early portion of the CGS transient response in target gas (TG) identification. Experimental results proved that applying extracted features from an early part of the CGS transient response along with a classifier can distinguish short-chain alcohols from each other perfectly. Decreasing time of exposition in the interaction between target gas and sensing element improved the reliability of the sensor. Classification rate was also improved and time of identification was decreased. Moreover, the results indicated the optimum interval of the early transient response of the CGS for selecting portions to achieve the best classification rates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specific Fast Response CH4 Gas Sensor Based on Metal Oxide, Tungsten Carbide /SnO2Core-Shell Modified Interdigitated Electrode

In this study, a specific CH4 sensor is fabricated based on interdigitated electrode that modified with core-shell of tungsten carbide/tin oxide (WC/SnO2) nanoparticles by wet chemical method in different percents of carbon and tungsten. The morphology of wet chemical-synthesized WC/SnO2 core-shell was evaluated by different methods such as patterned X-ray d...

متن کامل

Gas Sensor Based on Large Hollow-Core Photonic Bandgap Fiber

One concern in using photonic band-gap fiber (PBGF) as a gas sensor is the response time. In this type of the gas sensors, response time is the time required for gas to diffuse into the hollow-core. So considering a large hollow-core PBGF (HC-PBGF), the response time can be significantly reduced. But in the large HC-PBGF, the fundamental issue is the presence of higher order modes (HOMs). Somet...

متن کامل

Fabrication of 1, 1-Dimethylhydrazine Gas sensor Based on Nano Structure Conducting Polyaniline

Determination of 1, 1-dimethylhydrazine (DMH) in air is carried out by spectrophotometry, GC or HPLC analysis, but in this study DMH was analyzed by a gas sensor based on nanostructure conducting polyaniline. Determination of DMH has been done very simplely and quickly in recent work. Electrically conductive fibers have been prepared by polymerization of aniline on surfaces of commercial polyme...

متن کامل

The study of humidity effect on carbon dioxide gas sensing properties of zinc oxide nanowires assisted by polyvinyl alcohol network at room temperature

In this research, Zinc oxide (ZnO) nanostructures were synthesized by low cost hydrothermal method. The grown ZnO nanostructures had a dispersed distribution with nanowire morphology and the specific surface area of about 7 m2.gr-1 which they have crystalized in hexagonal wurtzite structure. ZnO nanowires/polyvinyl alcohol network (ZP) on the epoxy glass substrate with cu-interdigited electrods...

متن کامل

ZnO nanoparticles as sensing materials with high gas response for detection of n-butanol gas

The high crystallinity ZnO nanoparticles with an average particle diameter 30 nm have been successfully synthesized with a surfactant-mediated method. The cationic surfactant (cetyltrimethylammonium bromide, CTAB) and the hydrous metal chlorides (ZnCl2⋅2H2O) appear to be the good candidates for obtaining a high yield of nanoparticles. The structural and morphological characterizations were carr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2010